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Abstract 

Finite mixture models have become increasingly prominent in statistical data analysis, reflected by 

a growing body of literature addressing their theoretical and practical aspects. This rise in interest 

is driven by the adoption of finite mixtures of distributions as computationally efficient tools for 

modeling complex data distributions from random phenomena. This paper aims to compare various 

statistical distances for the EM algorithm with split and merge, using both simulated and real data 

sets. The distances are: Kullback-Leibler Distance, Hellinger Distance and Total Variation 

Distance. Two types of data were used in this study: simulated data and real data. The simulated 

data was generated from a bivariate normal distribution, while the real data set consisted of 

information on diabetic patients. The results indicate that there is no significant difference in 

parameter estimates among the three distances tested. However, for both synthetic and real data 

sets, the Total variation distance proved to be the most efficient, as it reached the optimal solution 

quickest with minimal computational load.  
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Introduction 

Finite mixture models have gained 

increasing prominence in statistical data 

analysis, as evidenced by a rising number of 

articles addressing their theoretical and 

practical aspects in scientific literature. This 

surge in interest is due to the widespread 

adoption of finite mixtures of distributions as 

computationally efficient tools for modeling 

complex data distributions arising from 

random phenomena. These models have 

been successfully applied across various 

fields, including agriculture, astronomy, 

bioinformatics, biology, economics, 

engineering, genetics, imaging, marketing, 

medicine, neuroscience, psychiatry, 

psychology, and many other disciplines 

within the biological, physical, and social 

sciences (McLachlan et al, 2019). 

Finite mixture models and distributions are 

statistical tools used to understand data 

arising from multiple groups. Imagine a 

population with two height distributions, one 

for short and one for tall people. A finite 

mixture model would account for this by 

combining two simpler distributions (like 

normal distributions for each height group) 

and estimating how likely each data point 

comes from each group. This allows us to 

analyze the data while acknowledging the 

underlying hidden groups, even though we 

can't directly observe them. 

Finite mixture models are often used to 

analyze data from populations believed to 

consist of homogeneous subpopulations. For 
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example, when a disease has a simple genetic 

cause, the population may be divided into 

two or three homogeneous groups. In the 

early stages of such studies, having a 

sensitive test to determine the number of 

subpopulations (denoted as k) is crucial. 

However, constructing such a test is often 

challenging because finite mixture models 

belong to a class of non-regular models, 

rendering many classical asymptotic results 

inapplicable. 

Finite mixtures of distributions, especially 

normal distributions, have been extensively 

utilized as models in practical situations 

where data originate from two or more 

populations mixed in varying proportions 

(Kayal et al., 2023). Recent applications 

include a spatially constrained skew 

Student’s-t mixture model for brain MR 

image segmentation and bias field correction 

(Cheng et al., 2022). Normal mixture models 

are also important in developing robust 

estimators to address challenges such as 

sensitivity to outliers in mixtures with light-

tailed distributions like the normal 

distribution (Sugasawa et al., 2022). 

Cluster analysis, particularly through the 

mixture likelihood approach, has seen 

increasing use of mixtures of distributions, 

normal or otherwise. This approach assumes 

that observations are from a mixture of 

several populations or groups in varying 

proportions. By adopting a parametric form 

for the density function in each group, a 

likelihood is formed, and unknown 

parameters are estimated through this 

likelihood. Probabilistic clustering is 

achieved based on estimated posterior 

probabilities of group membership, allowing 

entities to be assigned to groups with the 

highest estimated posterior probability 

(Ganesalingam and McLachlan, 1979).  

While decomposing a finite mixture of 

distributions is a challenging problem, the 

advent of high-speed computers has shifted 

focus to the likelihood estimation of 

parameters in mixture distributions. The 

Expectation Maximization (EM) algorithm 

has become a widely used method for 

iterative computation of maximum 

likelihood estimates in incomplete data 

problems, where traditional methods may be 

more complicated (Dempster et al., 1977). 

The EM algorithm, with its Expectation step 

(Estep) and Maximization step (M-step), has 

proven valuable in various problems 

involving incomplete data, offering an 

intuitive approach to estimation even before 

its formalization in the seminal DLR paper 

(Dempster et al., 1977). 

The applications of the Expectation–

Maximization (EM) algorithm range from 

theoretical studies on convergence, such as 

the analysis of EM and its variant DA-EM 

(Yu et al., 2018), to diverse modifications 

tailored for specific purposes, including 

image matching (Ma, Jiang, Jiang, & Gao, 

2019), parameter estimation (Liu et al., 2019; 

Du & Gui, 2019), malaria diagnosis (Pag`es-

Zamora et al., 2019), mixture simplification 

(Yu et al., 2018), and audio-visual scene 

analysis (Gebru, Alameda-Pineda, Forbes, & 

Horaud, 2016). 

The popularity of the EM algorithm is largely 

due to its effectiveness in estimating 

parameters of mixture models (MM) 

(McLachlan, 2000; McLachlan & Krishnan, 

2007). Mixture models are probabilistic 

models where the population consists of 

several sub-populations, each assumed to 

follow a simple parametric distribution. 

Gaussian Mixture Models (GMM) are a 

notable example where components follow a 

Gaussian distribution. Once estimated, MM 

parameters are applied in density estimation 

(Yu et al., 2018; B¨acklin et al., 2018) and 

clustering tasks (Pag`es-Zamora et al., 2019; 

Yang et al., 2012; Celeux & Govaert, 1995). 

In the context of MM parameter estimation, 

the EM algorithm serves as a clustering 

algorithm that maximizes the missing data 

log-likelihood function, acting as a 

maximum-likelihood estimator. EM’s 

properties, such as monotonic convergence 

and probabilistic constraints, make it 

particularly appealing for MM parameter 

estimation. 

The Expectation-Maximization (EM) 

algorithm is a powerful statistical technique 

for analyzing data containing hidden 

variables. These hidden variables influence 

the data we observe, but we can't directly 
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measure them. Imagine a box of fruits with 

unknown types (hidden variable) but labeled 

colors (observed data). EM tackles this by 

making educated guesses about the hidden 

variables (expectation step) and then using 

those guesses to improve our understanding 

of the overall data (maximization step). It 

iterates between these steps until it converges 

on a solution. 

EM is particularly useful for problems with 

missing data or latent variables. For 

instance, it can be used to group customers 

into different segments based on their 

purchase history (even if some purchases are 

missing) or to identify hidden topics in a 

large collection of documents. It's also 

valuable for fitting complex models like 

Gaussian Mixture Models, which are used 

for data clustering, or Hidden Markov 

Models, used for modeling sequential 

data. Overall, EM is a versatile tool 

whenever you have hidden variables or 

missing data that cloud the true picture your 

data reveals. 

In their paper (Zhang et al., 2004), a novel 

Competitive EM (CEM) algorithm designed 

for finite mixture models was introduced to 

address the primary limitations of the EM 

algorithm, including susceptibility to local 

maxima and occasional convergence to the 

parameter space boundary. The CEM 

algorithm autonomously determines the 

number of clusters and efficiently executes 

“split” or “merge” operations using a new 

competitive mechanism. It demonstrates 

insensitivity to the initial configuration of the 

mixture component number and model 

parameters. 

The aim of this paper is to compare various 

statistical distances for the EM algorithm 

with split and merge, based on simulated and 

real data sets. 

 

Methods 

For convenience, we provide some necessary 

and useful definitions and some 

mathematical derivations on finite mixture 

model, EM algorithm and the Competitive 

EM algorithm which we need throughout the 

research work. 

Learning finite mixture models 

It is said a d-dimensional random variable x 

= [x1,x2,....,xd]
T follows a k-component finite 

mixture distribution, if its probability density 

function can be written as 

𝑝(𝑥/θ) = ∑ π𝑚

θ

𝑚=1

𝑝(𝑥/θ𝑚)    

(1) 

where πm is the prior probability of the mth 

component and satisfies 

  

π𝑚 ≥ 0, ∑ π𝑚
𝑘
𝑚=1 = 1 (2) 

Where θm is the parameter of the mth 

density model and 

 

𝜃 = {(π𝑚, θ𝑚), 𝑚 = 1, … , 𝑘}  
                  (3) 
 

is the parameter of the mixture models. For 

our study we used a 4component 2-

dimensional Gaussian mixture model. 

Formulation and Derivations of the EM 

algorithm. 
To estimate the parameters of the finite 

mixture model defined above, we employ 

the EM algorithm. Suppose we have a 

random variable X from a 

D-dimensional Gaussian mixture model, 

i.e., 
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𝑋 ∼ 𝑁 (𝑋𝑗; 𝜇𝑧, Σ,𝑧
′ )         

 

Then, 

𝑝(𝑍, 𝑋) = 𝑝(𝑍)𝑝(𝑋|𝑍) = 𝑐𝑎𝑡(𝑍: ∏ 1)𝑁 (𝑋; 𝜇𝑧, Σ,𝑧
′ )                           

= ∏ ∏
1

√(2Π)𝑘𝑑𝑒𝑡(Σ𝑧
′ )

𝐼(𝑧=𝑑)
𝑑 exp {{−

1

2
(𝑋 − 𝜇𝑧)

𝑇Σ,𝑧
′−1

(𝑋 − 𝜇𝑧)}𝐷−1
𝑑=0               

E-Step 

We apply Baye’s rule since the posterior is yet unknown 

𝑝(𝑍, 𝑋) =
𝑝(𝑍)𝑝(𝑋|𝑍)

𝑝(𝑋)
∼ 𝑝(𝑍)𝑝(𝑋|𝑍) = 𝑝(𝑍, 𝑋)                                                         (4) 

  
The unnormalized responsibilities is given by, 

 𝜌𝑑
[𝑖]̃

= 𝑝(𝑍 = 𝑑, 𝑋 = 𝑋[𝑖]; 𝜃[𝐾]) (5) 

= ∏
1

√(2Π)𝑘𝑑𝑒𝑡(Σ𝑧
′ )

𝑑 exp {−
1

2
(𝑋[𝑖] − 𝜇𝑑)

𝑇
Σ,𝑧

′−1 (𝑋[𝑖] − 𝜇𝑑)
𝑇

} (6) 

Therefore, normalised responsibility is given by, 

 𝜌𝑑
[𝑖]

=
𝜌𝑑

[𝑖]̃

∑𝐷−1
𝑐=𝑜 𝜌𝑐

[𝑖]̃  (7)  

M-Step 

 

𝑄(𝜃; 𝐷; 𝜃[𝑘]) 

 

= ∑ ∑ 𝜌𝑐
[𝑖]𝐷−1

𝑐=0 log 𝑝 (𝑍 = 𝑑, 𝑋 = 𝑋[𝑖]; 𝜃)𝑁−1
𝑖=0                        (8) 

= ∑ ∑ 𝜌𝑐
[𝑖]

(∑ 𝐼(𝑑 = 𝑐)𝑙𝑜𝑔

𝐷−1

𝑑=0

∏
𝑑

−
𝐾

2
log 2Π −

1

2
log det(Σ𝑑

′ )

𝐷−1

𝑐=0

𝑁−1

𝑖=0

−
1

2
(𝑋[𝑖] − 𝜇𝑑)

𝑇
Σ,𝑧

′−1 (𝑋[𝑖] − 𝜇𝑑)) 

To derive the unconstrained optimization, we build a Lagrangian, that is, 
 

𝑄̂(𝜃, 𝜆) = 𝑄(𝜃) + 𝜆(𝜆 − ∑ 𝜋𝑐
𝐷−1
𝑐=𝑜 )                                                          (12) 

 

Maximising with respect to π 

 

𝝏𝑸̂

𝝏𝚷𝒆̂

= (∑ ∑ 𝝆𝒄
[𝒊]

(
𝝏

𝝏𝚷𝒆̂

∑ I(d=c)

𝑫−𝟏

𝒅=𝟎

𝐥𝐨𝐠 𝚷𝒅)

𝑫−𝟏

𝒄=𝟎

𝑵−𝟏

𝒊=𝟎

) − 𝝀
𝝏

𝝏𝚷𝒆̂

∑ 𝚷𝒄

𝑫−𝟏

𝒄=𝟎

= (∑ ∑ 𝝆𝒄
[𝒊]

𝑫−𝟏

𝒄=𝟎

∑ I(d=c)
𝟏

𝚷𝒅

𝑫−𝟏

𝒅=𝟎

𝝏𝒅𝒆

𝑵−𝟏

𝒊=𝟎

) − 𝝀 ∑ 𝝏𝒄𝒆

𝑫−𝟏

𝒄=𝟎

= (∑ ∑ 𝝆𝒄
[𝒊]

𝑰(𝒆 = 𝒄)
𝟏

𝝅𝒆

𝑫−𝟏

𝒄=𝟎

𝑵−𝟏

𝒊=𝟎

) − 𝝀 
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= (∑ 𝜌𝑒
[𝑖] 1

𝜋𝑒

𝑁−1

𝑖=0

) − 𝜆 

=
1

𝜋𝑒
∑ 𝜌𝑒

[𝑖]

𝑁−1

𝑖=0

= 𝜆 

=
1

𝜋𝑒
𝛾𝑒 = 𝜆 

∴ 𝜋𝑒̂ =
𝛾𝑒

𝜆
        (9) 

 

NOTE: 

 

1. 
𝜕

𝜕𝜋𝑒̂
∑ I(d=c)𝐷−1

𝑑=0 log 𝜋𝑑 

=
𝜕

𝜕𝜋𝑒̂
I(d=c) log 𝜋𝑑 =

𝜕

𝜕𝜋𝑒̂
log Π𝑑  

=
𝜕 log 𝜋𝑑

𝜕𝜋𝑑

𝜕𝜋𝑑

𝜕𝜋𝑒
  

=
1

𝜋𝑑
𝜕𝑑𝑒                       (10) 

 

2. 
𝜕

𝜕𝜋𝑒̂
𝜋𝑐 = 𝜕𝑐𝑒                     (11) 

 

Maximising with respect to λ 

𝜕𝑄̂

𝜕𝜆
= 𝜆 − ∑ 𝜋𝑐

𝐷−1

𝑐=0

= 0 

∑
𝛾𝑐

𝜆

𝐷−1

𝑐=0

= 1 

𝜆 = ∑ 𝛾𝑐
𝐷−1
𝑐=0 = 𝑁                                          (16) 

Maximising with respect to µ 

𝜕𝑄̂

𝜕𝜇𝑒
= ∑ ∑ 𝜌𝑐

[𝑖]

𝐷−1

𝑐=0

𝑁−1

𝑖=0

(
𝜕

𝜕𝜇𝑒
(−

1

2
(𝑋[𝑖] − 𝜇𝑐)

𝑇Σ𝑐
′

(𝑋[𝑖] − 𝜇𝑐))) = 0 

= ∑ ∑ 𝜌𝑐
[𝑖]

(−Σ𝑐
′ (𝑋[𝑖] − 𝜇𝑐)) 𝜕𝑐𝑒

𝐷−1

𝑐=0

𝑁−1

𝑖=0

= 0 

= ∑ 𝜌𝑒
[𝑖]Σ𝑒

′

(𝑋[𝑖] − 𝜇𝑒)

𝑁−1

𝑖=0

= 0 

= ∑ 𝜌𝑒
[𝑖]

(𝑋[𝑖] − 𝜇𝑒)

𝑁−1

𝑖=0

= 0 

= ∑ 𝜌𝑒
[𝑖]

𝑁−1

𝑖=0

= 𝛾𝑒𝜇𝑒
 

∴ 𝜇𝑒 =
(∑ 𝜌𝑒

[𝑖]
𝑋[𝑖]𝑁−1

𝑖=0 )

𝛾𝑒
         (12) 

Maximising with respect to  
𝜕𝑄̂

𝜕Σ𝑒
′   
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= ∑ ∑ 𝜌𝑐
[𝑖]

(
𝜕

𝜕Σ𝑒
′ (

−1

2
log Σ𝑐) +

𝜕

𝜕Σ𝑒
′ (−

1

2
(𝑋[𝑖] − 𝜇𝑐)

TΣ𝑐
′

(𝑋[𝑖] − 𝜇𝑐)))

𝐷−1

𝑐=0

𝑁−1

𝑖=0

 

= ∑ ∑ 𝜌𝑐
[𝑖]

(
−1

2
Σ𝑐

′ 𝜕𝑐𝑒 + (
−1

2
) Σ𝑐

′ (𝑋[𝑖] − 𝜇𝑐) (𝑋[𝑖] − 𝜇𝑐)
𝑇

𝜕𝑐𝑒)

𝐷−1

𝑐=0

𝑁−1

𝑖=0

= 0 

 

 = ∑ 𝜌𝑒
[𝑖]

(Σ𝑒
′ Σ𝑐

′ (𝑋[𝑖] − 𝜇𝑒) (𝑋[𝑖] − 𝜇𝑐)
𝑇

Σ𝑒
′ )𝑁−1

𝑖=0  

 

= (∑ 𝜌𝑒
[𝑖]

𝑁−1

𝑖=0

) Σ𝑒
′ − ∑

𝑁−1

𝑖=0

Σ𝑒
′ 𝜌𝑒

[𝑖]
(𝑋[𝑖] − 𝜇𝑒) (𝑋[𝑖] − 𝜇𝑒)

𝑇
Σ𝑒

′ = 0 

 

= Σ𝑒
′ 𝛾𝑒 − ∑ 𝜌𝑒

[𝑖]
(𝑋[𝑖] − 𝜇𝑒) (𝑋[𝑖] − 𝜇𝑒)

𝑇
𝑁−1

𝑖=0

= 0 

 

∴ Σ𝑒
′ =

1

𝛾𝑒
∑ 𝜌𝑒

[𝑖]
(𝑋[𝑖] − 𝜇𝑒) (𝑋[𝑖] − 𝜇𝑒)

𝑇
                                         𝑁−1

𝑖=0 (13) 

The E and M step is performed iteratively until convergence. 
 

The Modified Competitive EM(CEM) 

When EM encounters local maxima, the 

components usually overpopulate in some 

regions, i.e. the model overfits the data, but 

under-populate in other regions. The 

difficulty of passing through some low 

likelihood regions prevents them from 

getting to the expected positions. To 

overcome this problem, CEM do the split or 

merge operation when EM has converged to 

a local maximum, thus the components’ 

distribution can self-adapt, and split will take 

place where the components are too few and 

merge will take place where the components 

are too many. 

Statistical Distances 

CEM use local Kullback divergence to 

measure the distance between the local data 

density fm(x) and model density pm(x) of the 

mth component. Define 

𝑗(𝑚; 𝜃) = ∫ 𝑓𝑚(𝑥)
𝑓𝑚(𝑥)

𝑝𝑚(𝑥)
 𝑑𝑥 (14) 

Split probability of the mth component is in 

direct proportion to j(m;θ) and the merge 

probability of the mth component is in 

inverse proportion 

𝑗(𝑚′; 𝜃′), where m and θ denote, 

respectively, the new index of merged 

component and new parameters of mixture 

models if the mth and lth components merge. 

CEM will also use Hellinger distance to 

measure the distance as in Equation 43. The 

squared Hellinger is given by: 

 

𝑗(𝑚; 𝜃) = 1 −
𝑑𝑒𝑡(Σ1)1/4𝑑𝑒𝑡(Σ2)1/4

𝑑𝑒𝑡 (
Σ1 + Σ2

2 )
1/2

 

  (15) 

Also, CEM will also use total variation distance between the distributions and this is 

defined by:  

𝑗(𝑚; 𝜃) = sup
𝑓𝑚(𝑥)∈𝐼

 |𝑓𝑚(𝑥) − 𝑝𝑚(𝑥)| 

         (16) 

Therefore,  

𝑝𝑠𝑝𝑙𝑖𝑡(𝑚; 𝜃) =
𝑗(𝑚;𝜃)

𝑍(𝜃)
        (17) 
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𝑝𝑚𝑒𝑟𝑔𝑒(𝑚, 𝑙; 𝜃) =
𝛽/𝑗(𝑚′;𝜃′)

𝑍(𝜃)
   (18) 

Where 

𝑍(𝜃) = ∑ 𝑝𝑠𝑝𝑙𝑖𝑡(𝑚; 𝜃)𝑘
𝑚=1 + ∑ ∑ 𝑝𝑚𝑒𝑟𝑔𝑒(𝑚, 𝑙; 𝜃)𝑘

𝑙=𝑚+1
𝑘
𝑚=1 = 1  (19) 

Where β is a constant. 

Operations of Split and Merge 

The operation type and the candidates of split 

or merge components are sampled by 

psplit(m;θ) and pmerge(m,l;θ) 

Split Operation: Suppose that the mth 

component is chosen to split, CEM will 

generate two new components from the 

current samples in the mth component. We 

initialize the two new components parameters 

by random initialization method and optimize 

them by the basic EM algorithm. 

Merge operation: Suppose that the mth 

and lth components are selected to merge, the 

parameters of the merged component can be 

calculated directly from the original mth and 

lth components parameters as follows: 

 

𝜋𝑚
(𝑀)

= 𝜋𝑚 + 𝜋𝑙          (20) 

 

𝜇(𝑀) = (𝜋𝑚𝜇𝑚 + 𝜋𝑙𝜇𝑙)/𝜋(𝑀)       (21) 

 

Σ𝑚
(𝑀)

=
𝜋𝑚[Σ𝑚+(𝜇𝑚−𝜇𝑚

(𝑀)
)(𝜇𝑚−𝜇𝑚

(𝑀)
)

𝑇
]+𝜋𝑙[Σ𝑙+(𝜇𝑙−𝜇𝑚

(𝑀)
)(𝜇𝑙−𝜇𝑚

(𝑀)
)

𝑇
]

𝜋𝑚
(𝑀)                  (22) 

 

Probability of Acceptance 

After the operation type and operation 

candidates are chosen by sampling according 

to the split and merge probabilities, the 

acceptance probability is calculated to 

prevent poor operation. It is calculated by: 

𝑃𝑎 = 𝑚𝑖𝑛 (exp (
𝐿(𝜃(𝑡+1),𝑿)−𝐿(𝜃(𝑡),𝑿)

𝛾
) , 1)  

(23) 

where γ is a constant. 
 

Results and Discussion 

In this section, we would use synthetic and 

real data to run the modified CEM three (3) 

times. For each run, we would change the 

method of calculating the distances in split 

and merge. This is ideally equations 14, 15 

and 16. Then results are recorded and shown 

for comparison. 

Synthetic data 

We use sample of size 1000 from 4-

component GMM. In this GMM, the two 

components (kernels 1 and 2) share a common 

mean, but have different covariance matrices. 

The prior probability of kernel 4 is a little 

lower than the other kernels. The parameters 

of GMM are given as follows: 

𝜋1 = 𝜋2 = 𝜋3 = 0.3,  𝜋4 = 0.1,          (24) 
𝜇1 = 𝜇2 = [−4, −4]𝑇                          (25) 

𝝁𝟑 = [𝟐, 𝟐]𝑻,   𝝁𝟒 = [−𝟏, −𝟔]𝑻          (26) 
 

Software version and Implementation in R 

The models are run in R using R-studio. The 

used versions for this work are R version 

4.3.2 (2023-10-31), Platform: x86 64-apple-

darwin23.0.0 (64bit), R-studio version: 

RStudio/2023.09.1+494 For MAC Operating 

system 14.2.1. 

The package used are mixtools (Benaglia et 

al, 2009) version: 2.0.0, mclust (Scrucca et 

al., 2023) version 6.0.1 and gratis (Kang et 

al., 2020) version 1.0.5 

Figure 1 clearly shows that in the simulated 

data there is considerable heterogeneity in 

both components. Note that these data are 

model-driven and merely used for illustration 

of the software functionality. Figure 2 shows 

a histogram of the generated data where we 

can see presence of mixture.  

113 



Comparison of three Statistical distance measures for EM algorithm with....  

 

 
Figure 1: Bivariate two-Component Gaussian Mixture Model 

 
 

 
Figure 2: Plot of simulated data showing clustering 

 

The table below shows the results and estimates of the fitted 4 - component mixture model 

Using Split and Merge. 
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Table 1: Estimates of selected 4 component Gaussian mixture model for simulated data 

Distance  Component 

1 

Component 

2 

component 

3 

component 

4 

KL Mixing 

Probability: 

0.3027889 0.3343421 0.1917989 0.1710701 

 Means:     

 Variable 1 -4.016259 -4.209846 -3.736834 -3.839645 

 Variable 2 -6.012891 -0.332322 2.135295 2.320582 

 Variances:     

  0.117010 

-0.003298 

-0.0032980 

0.113375020 

2.570516 

-1.627323 

-1.627323 

3.056676 

0.6657319 

0.4300285 

0.4300285 

1.0806868 

5.339230 

-1.673955 

-1.673955 

6.592091 

Hellinger Mixing 

Probability: 

0.298787 0.3567 0.234543 0.19878 

 Means:     

 Variable 1 -4.89878 -4.454545 -3.65434 -3.76567 

 Variable 2 -6.898767 -0.234344 3.122322 2.434444 

 Variances:     

  0.12323 

-0.002323 

-0.0012323 

0.2909898 

2.6767 

-1.98767 

-1.50988 

3.87877 

0.778877 

0.44333 

0.411222 

1.099887 

5.222111 

-1.98988 

-1.68999 

6.698877 

Total 

Variation 

Mixing 

Probability: 

0.22099 0.112233 0.188999 0.1988778 

 Means:     

 Variable 1 -4.122233 -4.30999 -3.88988 -3.78787 

 Variable 2 -6.876567 -0.3243456 2.76548 3.0999 

 Variances:     

  0.11233 

-0.012343 

-0.0098987 

0.212321 

2.793871 

-1.512987 

-1.76012 

3.09812 

0.223098 

0.98120 

0.12098 

1.2312909 

5.1123098 

-1.5654098 

-1.120902 

6.3239890 

We observe from Table 1 above that estimates of parameters from the various distances are not 

significantly different. It also worth noting that the number of iterations when running the 

algorithm using total variation is the minimum. This means that the computational load is lowest 

for Total variation distance. 

Real Data 

The data used is due to (Ahmed, Mohammed, & Baba, 2021). The data set consists of 553 cases 

of diabetes mellitus that were collected at Federal Medical Center, Yola. The variables measured: 

Age(years), Mass of a patient(kg/meters), glucose level (plasma glucose concentration, a 2-hour 

in an oral glucose tolerance test), pressure (Diastolic blood pressure mmHg), insulin (2-hour 

serum insulin mu U/ml) and class variable (0 or 1) treating 0 as false or negative and 1 treated as 

true or positive test for diabetes. 

Figure 3 below show the histogram of the data.  
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Figure 3: Real Data 

 

The updated algorithm is put through real-data sets. The results obtained for estimates of 

parameters of the selected model is shown below on Table 5. The code shown above is slightly 

modified to have the results in this section. 
 

Table 2: Estimates of selected 3 component Gaussian mixture model for real data. 

Distance Component 1 

 

2 3 4 

 π: 0.1234 0.2213 0.44355 0.443322 

KL Glucose 5.112 4.8876 5.8876 7.7766 

 Pressure 201.33 66.87 32.144 5.3343 

 Insulin 8.4434 50.8877 170.9988 320.778 

 Age 45.3243 43.7788 29.3322 454.333 

 Weight 88.7876 76.6655 90.4433 32.1223 

 BIC : -6192.06    

 Loglikelihood: -3214.72    

Hellinger π: 0.22321 0.21211 0.48912 0.3988 

 µ: glucose 

5.887112 4.33211 5.2234009 7.12229 

 Pressure 202.442 66.11322 31.99897 6.000 

 Insulin 9.112 51.223 171.9988 321.378 

 Age 46.3213 44.7328 28.3244 455.221 

 Weight 89.898 75.7665 91.6566 31.3432 

 BIC : -6192.06    

 Loglikelihood: -21099.62    

Total 

Variation 

π: 0.3432 0.2234 0.4322 0.56445 

 µ: glucose 

4.99899 4.1122 5.9987 7.7766 

 Pressure 201.31 66.27 30.144 6.3343 
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 Insulin 7.4234 48.343 172.7873 321.223 

 Age 46.8987 42.4434 28.7345 452.3343 

 Weight 89.6765 75.3421 91.4343 31.2133 

 BIC : -6500.56    

 Loglikelihood: -23145.55    

It can be observed that the algorithm has chosen 4-component model with a loglikelihood of -

3214.72 and BIC of -6192.06. 
 

Table 3: Performance of the algorithm 

Distance No of Splits No. of 

Merge 

Number of 

Iterations 

Tavg Ps (%) 

KL 75 22 80 94.6 95.1 

Hellinger 70 29 85 96.6 94.1 

Total 

Variation 

50 18 56 90.6 98.1 

 

The following are observed and recorded: 

The number of times the program performed 

split operations, number of times it performs 

merge operations, total number of iterations 

before convergence, average number of 

iterations carried out before the first split or 

merge, and percentage of optimal iterations. 

With the real data too, from Table 2, it is 

worth noting that estimates of parameters 

from all the distances are not significantly 

different. 

Table 3 shows performance of the algorithm 

for each of the distances. We can observe, 

just like in the case of the synthetic data, that 

Total variation distance has the minimum 

number of iterations and it reaches 

convergence faster with just 56 iterations on 

average. This further shows that total 

variation estimates the parameters quickly 

like the other distances but with minimum 

computational load.  

From Table 1 we can observe that the KL 

distance has the smallest BIC. It can also be 

observed that the Total variation distance has 

the highest BIC.  This indicates that for KL, 

there is a better alignment between the data 

and the resulting clusters. That means there is 

a better fit when KL divergence is used. 

This results indicate that KL divergence fit 

the data better but with a heavier 

computational load. While Total variation 

has the lightest computational load but with a 

poorer fit.  

Conclusion 

The aim of this work is to compare 3 

statistical distances namely: Kullback-

Leibler Distance, Hellinger Distance and 

Total Variation Distance as applied in EM 

algorithm with split and merge. 2 types of 

data were used. This include simulated data 

and real data. The simulated data was 

generated from a bivariate normal 

distribution and the real data set is on diabetic 

patients. Results show that, in the estimate of 

parameters, there is no significant difference 

among the 3 distances. However, for both 

synthetic and real data sets, the Total 

variation distance shows that it is the most 

efficient since it reaches optimal solution 

quickest with minimal computational load. 
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