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Abstract: In this paper we developed a mathematical model to study the dynamics of sickle cell 

disease in a population. We assumed that an incidence of the disease occurs if a person inherits 

the disease from his parents, at first without complications, and then with time the person may 

develop complications. The study partitioned the population of sicklers into; Population of 

sicklers without complications and population of sicklers with complications. The major result of 

this study suggested that; a study of the genetics of the transmission mechanism of the sickle cell 

gene should be carried out with a view to adopt artificial selection (that is; to counsel carriers of 

the sickle cell gene and full blown sicklers on marital couple selection) to control the incidence 

of the disease, this will in turn control sickle cell disease in a population. 
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Introduction 

Sickle cell disease is an inherited genetic blood 

disorder that affects red blood cells. The disease 

is due to the mutation of the sixth position of the 

beta globin chain of Haemoglobin, Nikki et al 

(2008). In fact Sickle-cell disease (SCD) was the 

first genetic disease to be linked to the mutation 

of a specific protein. The disease is caused by a 

point mutation in the molecule haemoglobin, the 

active constituent of red blood cells (RBCs) that 

transports oxygen from the lungs to the rest of 

the body. Unlike the normal protein, 

haemoglobin A (HbA), the mutant protein, 

haemoglobin S (HbS), polymerizes to form 

filaments under deoxygenated conditions typical 

of the venous system, a process that is reversible 

upon oxygenation in the lungs. The resulting 

HbS polymers alter the rigidity of RBCs and can 

lead to the characteristic sickled cell shape 

associated with the disease. The stiffer RBCs 

slow down in the venous system where further 

oxygen starvation exacerbates the effect, 

eventually leading to vaso-occlusion, clogging, 

and haemostasis resulting in a crisis Cohen and 

Mahadevan (2013). The fundamental unit of 

living tissue, in fact of life itself, is the 

biological cell. Currently there is enormous 

interest in silico modeling of the cell in its many 

aspects. The cell is, of course, an enormously 

complex machine which can be understood at 

many levels, functional, signalling, metabolic, 

and regulatory levels and so on. However, there 

is a growing recognition that understanding its 

structure and the physical nature of intracellular 
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objects, as well as their three dimensional 

spatialrelationships, can yield significant 

insights into physiology and functionality, 

Venugopal (2007).  

  

Systems biology of red blood cell is complex 

and researchers worldwide. An effort was 

successful in defining the human red cell 

Proteome (2004). Venugopal (2007) reported in 

his work that; the research done by other group 

indicates that current red blood cell in-silico 

model includes 36 dynamic, independent 

variables. There is still some phenomenon left, 

in order to extend the existing model; the most 

important one is deformation of shape of 

membrane. In every red blood cell there are 280 

million molecules of haemoglobin protein, 

which is a long twisted strand of amino acids, 

having heme disk whose iron in the center 

attracts, carries and releases oxygen. The 

structure has been crystallized and its double 

strand has been described by Royer et al. (1997), 

Royer et al. (1998). Sickled cell haemoglobin 

(Hbs) is mutated and polymerized into long, 

stiff, rod-like fibre Hofrichter (1990). The 

genetic mutation in haemoglobin A (HbA) give 

rise to HbS. The consequence of this mutation is 

the resultant in loss of oxygen by HbS and 

formation of rigid14-stranded polymers. This 

changes the shape of the protein: a small 

protrusion (or dent) appears on the surface of the 

proteins.  

 

Nikki et al (2008) in their paper ‘A 

mathematical model for sickle cell 

depolymerisation: dynamical properties and 

numerical experiments’ the mathematical model 

was to assess the effects of carbon monoxide 

(CO) on sickle cell haemoglobin (HbS) during 

HbS polymer melting. Assuming a buffer 

solution in which a mixture of HbS solution and 

fibres is rapidly mixed with CO, the model 

describes the subsequent dynamic interaction of 

four phases 

of the HbS components. They presented stability 

analysis of the model in the CO-free case, the 

CO-saturated case and the general case. The 

model supports the proposition that CO binds 

directly to solution phase as well as polymerized 

HbS, and it predicts that while all the HbS 

becomes CO-bound at equilibrium, not all the 

HbS fibres are necessarily melted, indicating the 

presence of CO-bound fibre molecules. 

 

Masatoshi (1975) developed a mathematical 

model for recessive gene frequency dynamics 

under the influence of selection, assuming no 

mutation, the model was used to study recessive 

gene frequency change with time, the result of 

his work showed that the gene frequency of 

recessive genes increases very slowly when it is 

small but very rapidly when it is large 

Jeam (2007) formulated a realistic demographic 

model that captures the pattern of inheritance of 

the sickle cell gene using general pair 

formations. The model equation was implicitly 

solved via Laplace transform technique, while 

the existence of unique solution was proved by 

applying the contraction mapping principle. One 

of the main results is the boundedness of the 

solution. He concluded that; the fundamental 

reason for the persistence of sickle cell anaemia 

is probably due to the role played by the 

selective advantage of the abnormal sickle cell 

gene over the normal haemoglobin A in tropical 

regions, and the fact that carriers are more fertile 

and survive longer, because they are essentially 

asymptomatic.  

Cohen and Mahadevan (2013) develop a 

multiphase model that couples the kinetics and 

hydrodynamics of a flowing suspension of 

normal and sickled cells in a fluid. They used 

the model to derive expressions for the cell 

velocities and concentrations that quantify the 

hydrodynamics of haemostasis, and provide 

simple criteria as well as a phase diagram for 

occlusion, consistent with their simulations and 

earlier observations. 

Materials and Methods 

Assumptions: 

 The population of sicklers is finite  

 Birth rate is a function of time  

 Rate of developing complications is 

constant 

 Rate of recovery from complications is 

constant  

 Natural death rate is constant  

 Artificial selection allowed 

 Death due to complications is constant 

 A control measure to inhibit developing 

complications is introduced and is 

constant 

 Incidence of the disease occurs without 

complication  
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 Complications are developed with time 

after the incidence  

Notations: 

 Number of sicklers without 

complications 

  Number of sicklers with 

complications 

  Natural death rate  

  Rate of developing 

complications  

  Death due to complications  

  Rate of recovery from 

complication  

  Control effectiveness for 

inhibiting complication(s) development   

  Incidence (birth) rate for 

sicklers  

  Is time 

Description of the dynamics of sickle cell 

disease 

In a population, an incidence of sickle cell 

disease occurs at a rate , at first without 

complications into , and then with time a 

person develops complications at a rate  and 

moved into , a person may recover from 

complications  at a rate  back to sicklers 

without complication . The population of 

sicklers without complications is affected 

negatively by natural death at a rate , and 

control measures through the control 

effectiveness parameter , also the population of 

sicklers with complications is affected 

negatively by natural death at a rate , death as a 

result of complications .  The dynamics can be 

schematically represented as follow

 

Fig. 1: Schematic diagram of the dynamics of sicklers in a population 

Model development  

Looking at schematic representation of the 

dynamics of sicklers and the description of the 

dynamics, we mathematically compose the 

dynamics as follows. 

 

 

This simplifies to the following initial value 

problem (IVP): 
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Results and Discussion 

We have developed a mathematical model that 

describes the dynamics of sicklers in a 

population the model is given as; 

 

 

 With notations as defined above 

Solution for IVP 

We solve the IVP analytically so as to be able to 

gain more insight into the dynamics of the 

disease and carry out sensitivity analysis. To this 

effect, we assume a steady state of incidence, 

i.e. . Differentiating the first 

equation with respect to  we have;  

 

Substituting equation (1) & (2) and letting 

 we have 

                         

 

From equation (1), we have  

 

Using (4) in (3), we have  

 

Let , we have; 

 

 The complementary solution is given as 

 

Where  and are arbitrary constants 

The particular solution is , 

therefore the complete solution is: 

 

Substituting x(t) into equation (4), simplifying 

and letting 

 , and     

, we have; 

and    

 

Next we determine the constants using the initial 

conditions as follows; 

 

 
Therefore the solutions , which gives 

the number of sicklers without and with 

complications respectively in a population is 

given as: 
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Where; 

 

 

 

 
 

 

Discussion of results 

In order to discuss our results, we digitalize the 

parameters , (since µ and β are rates 

of natural death and death due to sickle cell 

disease, we may not have any control over these 

deaths, so we exclude them in our analysis) to 

have binary values for 0 (low) and 1 (high) with 

the following possible values; 

Case I: ; Case II: 

; Case III:  

In this respect, we have the following tree 

diagram 

Fig: Diagram for possible values for ,  and  

 

The above tree gives eight branches with values 

as follows; 

Branch 1: , ,    Population 

of sicklers remain static 

Branch 2: , ,    Population 

of sicklers under artificial control 

Branch 3: , ,    Not 

possible because if  then  

Branch 4: , , Artificial 

control, because if  then  

 

Branch 5: , ,    Population 

of sicklers with complications will explode 

Branch 6: , ,    Only 

artificial control and no recovery from 

complications 

Branch 7: , ,    Population 

of sicklers will remain without 

complicationswithout artificial control 

Branch 8: , ,    High 

recovery and high artificial control
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Equilibrium point 

At equilibrium point, we have that; 

---(9) 

 ---------(10) 

From which we obtained; 

 

 

Therefore the equilibrium point solutions are 

given by (11) and (12) 

Qualitative analysis 

Consider the dynamics equations; 

 

 

Now the Jacobian is given by  

 

For the Eigen values, we evaluate the 

determinant of (A-λI) as follows; 

Det(A- λI) = 

 

We do the computation along each branch of 

figure 1 as follows; 

CASE 1:  gives 

Det(A- λI) = 

 

Now Det(A- λI)=0, gives, 

 

In this case both Eigen values are both real with 

same sign 

CASE 2:  gives 

Det(A- λI) = 

 

Now Det(A- λI)=0, gives, 

 

will be real if 

this 

valid , similarly will be 

complex if  this is not possible 

since  Therefore  cannot be 

complex. 

CASE 3:  gives 

Det(A-λI) = 

 

Now Det(A- λI)=0, gives, 
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Now,  will be real if  

 since by definition  

 is valid. similarly will 

be complex if  this is not 

possible since  Therefore  cannot be 

complex. 

CASE 4:  gives 

Det(A- λI) = 

 

Now Det(A- λI)=0, gives, 

 

Now,  will be real if 

 

Since by definition is valid 

similarly  will be complex if 

. Also by definition,  

is not possible . Therefore  must be real, 

with same sign or not 

CASE 5:  gives 

Det(A- λI) = 

 

Det(A- λI)  = 0, gives, 

 

Now,  will be real if 

, this is valid for , similarly  will 

be complex if 
 

, this is not possible  value of 

. Therefore  must be real, with same sign 

or not 

CASE 6:  gives 

Det(A- λI) = 

 

Det(A- λI)  = 0, gives, 

 

Now,  will be real if 

 

. This is valid for . 

Similarly  will be complex if 

  

, this is not possible  value of . 

Therefore  must be real, with same sign or 

not 

CASE 7:  gives 

Det(A- λI) = 

 

Det(A- λI)  = 0, gives, 
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Now,  will be real if 

   this is valid for 

. Similarly 

 will be complex if 

  , this is not possible  value of . 

Therefore  must be real, with same sign or 

not 

CASE 8:  gives 

Det(A- λI) = 

Det(A- λI)  = 0, gives, 

 

Now,  will be real if 

 

  this is 

valid for . 

Similarly  will be complex if 

 

  , this is not 

possible  value of . Therefore  must be 

real, with same sign or not 

Interpretation of results 

We first present a summary of the case 

discussions above as follows; 

CASE 1:  = 0,  = 0, k = 0: In this case, 

both Eigen values as obtained are real negative 
 

CASE 2:  = 0,  = 0, k = 1: In this case, 

both Eigen values are real negative 
 

CASE 3:  = 0,  = 1, k = 0: In this case, 

both Eigen values are real negative 
 

CASE 4:  = 0,  = 1, k = 1: In this case, 

both Eigen values are real negative 
 

CASE 5:  = 1,  = 0, k = 0: In this case, 

both Eigen values are real negative 
 

CASE 6:  = 1,  = 0, k = 1: In this case, 

both Eigen values are real negative 
 

CASE 7:  = 1,  = 1, k = 0: In this case, 

both Eigen values are real negative 
 

CASE 8:  = 1,  = 1, k = 1: In this case, 

both Eigen values are real negative 
 

Furthermore, the equilibrium point solution for 

the system of equations describing the dynamics 

of sicklers without complications (x(t)) and 

sicklers with complications (y(t)) in a population 

are given by; 

 

 

Now from the summary of cases 1-8, we see that 

all the Eigen values are negative real numbers, 

this suggest that the equilibrium point solution is 

a sink, i.e. all solutions  &  for all values 

of t > 0 will die at the equilibrium point (see 

graphical picture in appendix A1), by 

implication, the population of sicklers without 

complications and the population of sicklers 

with complications will stabilize around the 

equilibrium point. 
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Looking at the equilibrium point solutions (13) 

and (14), we see that  &  depends on the 

incidence rate  for particular values of 

. 

Combining the results of the last two paragraphs 

above, we see that; to control sickle cell disease 

in a population we need to put the following 

measures in place: 

1) Control the incidence of the disease in a 

population. 

Manage sicklers so as to avoid developing 

complications.  

Controling the incidence 

We look at each measure analyze it and proffer 

solution  As stated in our introduction, sickle 

cell disease is caused by a mutant recessive gene 

in a population, thus the sickle cell gene has to 

exist in a homologous form before an individual 

manifests the sickle cell phenotype. The 

individual remain a carrier if the sickle cell gene 

exists in a haplotype form. Thus to control the 

incidence of sickle disease, we model the 

dynamics of the sickle cell gene as follows. 

Assumptions: 

1. A single sickle cell associated 

susceptibility factor (allele(s) or 

haplotype(s) is assumed to express 

transmission distortion. 

2. Let ‘A1’ denote the 

allele(s)/haplotype(s) expressing 

transmission distortion and conferring 

increase susceptibility of sickle cell 

disease, while ‘A2’ denote all other 

allele(s)/haplotype(s) in a diploid 

population 

3. Inheritance can be mendelian or 

otherwise,  such that for mendelian 

population , the probability of inheriting 

‘A1’ from a heterozygous (A1,A2) parent 

is 0.5. 

4. Mating is random 

5. Mutation is allowed to occur 

6. Selection is allowed to occur 

7. Generations are discrete. 

Notations 

X1,X2 - Relative frequencies of gene 

A1& A2 respectively such that X2=1-

X1 in a generation. 

Wij - Fitness of the possible genotypes AiAj 

i=1,2 ; j=1,2 

          - Mean fitness of the population 

μij - Forward mutation for gene Xi (j→i) 

μji - Reverse mutation for gene Xi (i→j) 

t - Time( in generation) 

s - Selection coefficient 

(selective disadvantage) 

t0 - Initial time  

X0 - Initial frequency at time     

t0 

 

Modelling 

From the contributions by Red’ko (1998) and 

Masatoshi (1975), and adopting the notations by 

Masatoshi (1975), we can deduce that; the 

evolutionary dynamics of the population in 

terms of the gene frequencies denoted here by 

 ( i.e. gene frequency change from generation 

to generation) is: 

i) Proportional to genotype selection 

proportion of organisms in accordance 

with their fitness relative to gene Xi, 

i=1,2. 

ii) Proportional to  mutation contribution, 

iii)  And inversely proportional to mean 

fitness of the population 
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Mathematically, we put it as (denoting gene 

frequency in the next generation by )  

 

  

 

  

Now the amount of change in gene frequency 

from one generation to the immediate next 

generation is given by;   

                              

--(15) 

Since 

, we have; 

 

Now If selection coefficients are small;  

&   is small, then we have; 

 

 depends on the relative values of W11, W12, 

W22 and not their absolute values.  

Since sickle cell gene is recessive, In line with 

Masatoshi (1975), we have for recessive gene,  

W11= 1, W12= W22=1-s, where s is the selection 

coefficient for the sickle cell gene. In this case, 

we have; 

 

Since (forward mutation) is of order 10
-

5
/generation, and because of the reccessivity of 

the sickle cell gene, the term  can be 

eliminated to simplify algebraic treatment 

without lost of generality. Thus we have 

 

Equation (17) is the required equation 

(Differential Equation) that describes the 

recessive sickle cell gene frequency dynamics 

over time t. 

Solution of the Resultant Differential 

Equation 

Consider the differential equation (17) 

Separating variables and integrating, we have; 

 

Now;  

 

 

 

Let , (6) 

becomes 

 

 

                                       thus  

 

 is a fraction of the sum total mutations 

determined by the initial sickle cell gene 

frequency X0.   can be considered as a 
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measure of recessivity of the sickle cell gene in a 

population. 

Solving for t, we have; 

Equation 21 gives the time it will take to achieve 

certain sickle cell frequency, given the values of 

k, s & X0. 

Sensitivity analysis 

In this section of the work, we give a graphical 

sensitivity analysis with respect to the selection 

coefficient, s, i.e. to investigate how the gene 

frequency X0 changes with changing 

hypothetical values of the selection coefficient, 

s.  

Now

; Masatoshi (1975), thus k =   

. Applying different values of s to 

equation 20 with X0,=0.01,  k=0.0000055 for 

t=1000 (generations), we generated the gene 

frequency table in appendix A2 and plotted the 

following graph.  We also study the behavior of 

the solution X(t) of the D.E. by looking at the 

effect of the values  of the selection coefficient S 

with respect to the 

 

 

 

 

 

 

 

 

 

 

measure of recessivity of the sickle cell under 

the following cases; 

CASE I: S<  , CASE II: S=  , CASE III: 

S> , CASE IV: S=0 ,  CASE V: S=1                           

CASE I: S < , (Meaning, selection coefficient 

is less than the measure of recessivity of the 

                           sickle cell), then, 

 

 

 

CASE II: S = , (Meaning, selection 

coefficient is equal to the measure of recessivity 

of the  sickle cell),  then 

 

This means if the selection coefficient      s=  , 

then the sickle cell gene frequency X(t) will be 

constant over time.  

CASE III: S > , (Meaning, selection 

coefficient is greater than the measure of 

recessivity of the sickle cell),clearly S > S -  

since S > 0,  S – (S -  

                     Also   (S -  > 0 

 

 

 

 

 

 

 

 

 

 

 

Fig 2:  Graph of gene frequency (X) change 

with change in selection coefficient (S) 
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Since t varies from 0 to  i.e. t  (S - 

 < (S -   t1 > t > 0; Thus: 

i) 

  

This means that the effect of the measure of 

recessivity is suppressed by total mutation rate 

k, with time via the exponential term   In 

this case 

  

ii) 

  

This means that the effect of the measure of 

recessivity is balanced up by total mutation rate 

k, with time via the exponential term   

iii) 

  

This means that the effect of the measure of 

recessivity cannot be suppressed by total 

mutation rate k, with time via the exponential 

term   

Therefore                  

 

By implication; 

 

i) CASE IV: s=0, X(t)= ⇒  

In this case; 

ii) CASE V: s=1,  

> 0 if  

                                                                         

 

 

 

Discussion 

1. Figure 2 summarizes the effect of the 

dynamics of selection coefficient S, on the 

gene frequency X(t). It shows that the gene 

frequency increases with increase in the value 

of selection coefficient S.  

2. From the behavior of the solution X(t) of the 

differential equation, CASES I-V, we deduce 

that to reduce the incidence of sickle cell, we 

need to reduce the sickle cell gene frequency to 

a value below the measure of recessivity  , 

i.e. S must be less than  (i.e. S < ) for the 

sickle cell gene frequency X(t) to drop 

progressively over time t, thus reducing the 

incidence of sickle cell. 

 

Summary 

From the above results and discussions, we 

deduce the follows; 

1. The optimal method of controlling sickle cell 

disease is to: 

Manage the dynamics of the sickle cell gene 

frequency by reducing the selection 

coefficient, S, which will in turn reduce the 

sickle cell gene frequency in the population 

over generations, thus making individuals of 

the population more fit. 

1. Manage and retard the rate of developing 

complications of the disease (sickle cell) 

In summary, a mathematical model for the   

dynamics of sicklers (without and with 

complications) in a population under the 

influence of artificial selection and mutation was 

developed. The result of the work suggested 

that; 

1) We need to control the incidence of sickle 

cell disease by way of introducing artificial 

selection based, in addition to natural 

selection, on sickle cell gene screening to 

control sickle cell disease. 

2) We need to manage sufferers of the disease 

(sickle cell) with a view to reduce the rate of 

developing complications, and to reverse and 

recondition sicklers with complications until 

natural death. 
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Conclusion 

From the above preliminary results & 

discussions, we conclude that; 

i) We need to control the incidences of sickle 

cell through reducing the selection 

coefficient S. This can be done by adopting 

the following strategies; 

ii) Avoid inbreeding by way of introducing 

artificial selection based (in addition to 

natural selection) on sickle cell sufferers. 

1) Genetic screening to detect carriers so that 

couples that carriers of the sickle cell will be 

counseled not to marry. 

2) Avoid exposing individuals dangerous 

radiations that can cause genetic mutation 

Also any population with selection coefficient 

S=0.0005 and below & initial gene frequency of 

X0=0.01, will experience a steady sickle cell 

gene frequency decrease with time. 
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Appendix A1: (A sketch of the direction of 

motion for x(t) & y(t) 

Sketching the graph of the null clines and using 

the Eigen values of the system of equations that 

describe the dynamics of x(t) & y(t), we have; 

Fig. 1: A sketch of the direction of motion for 

x(t) & y(t) 
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Appendix A2 (Showing generated gene frequency 

as a function of selection coefficient S) 

Table 1: Showing generated gene frequency as a 

function of selection coefficient S 

 

 

 

Selection 

coefficient S 

Gene freq. 

X(t) 
      

0.00001 0.00995 

      
0.00005 0.00995 

      
0.0001 0.00996 

      
0.0005 0.01 

        
0.00055 0.01 

        
0.001 0.01005 

        
0.005 0.01047 

        
0.01 0.01105 
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