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Abstract 
The Physical or Mathematical behaviour of any system may be represented by describing all the 

different states it may occupy and by indicating how it moves among these states. In this study, the 

states of the Markov chain with the integers 0,±1,±2, . .. (the drunkard’s straight line) where the 

only transitions from any state 𝑘  are to neighbouring states (𝑘 + 1): a step to the right with 

probability 𝑝 and (𝑘 − 1): a step to the left with probability 𝑞 = (1 − 𝑝) has been investigated, in 

order to provide some insight in determining whether the gambler is ruined, that is, loses all his 

money in which  Markov chain moves to state 0, and taken to be an absorbing state or wins a fortune 

that Markov chain moves into absorbing state 𝑁 > 𝑘, where  𝑁 is large). Our quest is to analyse 

the transition diagram and probability transition matrix to obtain the solution to the system of linear 

equations for the gambler’s ruin problem.  The theorems, Gaussian elimination method with the 

help of some existing equations and laws in Markov chain are used.  Illustrative example is 

considered on playing cards and the following probabilities are obtained: The probability that Grace 

ends up with all the cards, the probability that Gloria ends up with all the cards and the probability 

that Gloria takes all of Grace’s cards. 
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Introduction 

The image of a drunken man trying to walk 

home from the club along an imagined 

straight route might be utilized to analyze a 

normal random walk. That is, he walks 

zigzag while seeming to walk straight, 

sometimes to the right and sometimes to the 

left of his imagined straight line. This 

colorful scenario leads to the random walk, a 

common type of Markov chain problem. The 

integers 0,±1,±2, . .. (the drunkard's straight 

line) are the states of the Markov chain, and 

the only transitions from any state k are to 

neighboring states (𝑘 + 1) (a step to the 

right) with probability 𝑝 and (𝑘 − 1) (a step 

to the left) with probability 𝑞 = (1 − 𝑝). 
Figure 1 depicts the state transition diagram, 

using state 0 as the starting point. The 

technique is called a symmetric random walk 

when p = 1/2. The gambler's ruin problem 

refers to a situation in which the state space 

is finite. A gambler starts with a particular 

amount of money, say k Nairas (the process 

starts in state k > 0 in terms of the Markov 

chain), and on each play, the gambler can 

either win or lose a naira with probability ρ 

or  (1 − ρ). The goal is to see if the gambler 

is ruined, that is, if he loses all of his money 

(the Markov chain travels to state 0, which is 

considered an absorbing state) or if he wins a 
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fortune (the Markov chain advances to 

absorbing state 𝑁 > 𝑘, where  𝑁 is large). 

The state space is taken to be the set of 

nonnegative integers, and the Markov chain 

begins in state 0. Other variations are based 

on a random walk that is infinite on one side 

only, the state space is taken to be the set of 

nonnegative integers, and the Markov chain 

begins in state 0. The random walk problem 

can be defined in multiple dimensions. 

Random walks in two dimensions occur on a 

grid that can be unlimited and span the entire 

plain, infinite but only span the upper right 

quadrant, or finite. Each state communicates 

with at least four of its neighbors, North, 

South, East, and West, in these 

circumstances. When each transition 

probability is 1/4, the process is symmetric. 

There is a path from any state to any other 

state in random walks problems where the 

Markov chain is irreducible. All of the states 

are either positive recurrent, null recurrent, or 

transient in this situation. Except for the 

symmetric case, ρ = 1/2, all states in a one-

dimensional random walk on the integers 

0,1,2,3, are transient. In two dimensions, the 

same result applies, but in three dimensions 

or higher, even in the symmetric situation, all 

states are transient. Romanovsky (1970) 

introduced the study, application and 

simulation of a discrete Markov Chains and 

this was extended to the introduction of 

Numerical Solutions of Markov Chains and 

random walk by Stewart (1994, 2009) while 

the suitability of the Markov chain approach 

was demonstrated in the wind feed in 

Germany by Pesch (2015), and  Uzun (2017) 

carried out the study to predict the direction 

of the gold price movement  and to determine 

the probabilistic transition matrix of the 

closing returns of gold prices using Markov 

chain model of fuzzy state, the application of 

Markov chain using a data mining approach 

to get a prediction of the monthly rainfall data 

is shown by Aziza (2019), the application of 

Markov chain on the spread of disease 

infection which shown that Hepatitis B was 

more infectious overtime than tuberculosis 

and HIV was demonstrated by Clement 

(2019) while the application of Markov chain 

to Journalism was discussed by Vermeer 

(2020). However, this study, applications of 

random walk and gambler’s ruin on 

irreducible periodic Markov chain is 

considered with illustrative examples to 

obtained its performance measures, 

Notations 

𝑘, is the number of state; 𝑝, the probability of 

transition from state 𝑘 to state (𝑘 + 1); 𝑞 =
1 − 𝑝, the probability of transition from state 

𝑘 to state (𝑘 − 1) and 𝑥𝑗,𝑦𝑗, 𝑧𝑗 , 𝑗 =

1,2,⋯ ,𝑁, solutions of the system of linear 

equations. 
 

Materials and Methods 

The study area consisted of analysis of 

random walks and gambler ruin on 

irreducible periodic Markov chain. We 

started with the analysis of the state transition 

diagram for a random walk on the integers, as 

well as the analysis of its corresponding 

probability transition diagram. The state 

transition diagram could be represented as 

follows in Figure 1. 

Probabilities and reachability matrix in close 

and open classification group of states in 

Markov chain are transient, recurrence and 

communicating. We Consider the infinite 

(denumerable) Markov chain to analyse the 

probability transition matrix in random walk 

as given in Figure 2 below: 

                  p                   𝑝                 𝑝                      𝑝                  𝑝                  𝑝                                        

  ⋯                                                                                                                         ⋯                                                 

        1 − 𝑝          1 − 𝑝   1 − 𝑝   1 − 𝑝   1 − 𝑝           1 − 𝑝 

Figure 1: State transition diagram for a random walk on the integers 

-2 -1 0 1 2 
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𝑃 =

(

 
 

0 1 1 ⋯
𝑞 0 𝑝 0 ⋯
0
0
⋮

𝑞
0
⋮

0 𝑝 0 ⋯

𝑞 0 𝑝
⋮ ⋮ ⋮ ⋱ )

 
 

 

Figure 2: State transition probability matrix for a random walk on the integers 

where 𝑝 is a positive probability and 𝑞 = 1 −
𝑝 . Observe that every time the Markov chain 

reaches state 0, it must leave it again at the 

next time step. State 0 is said to constitute a 

reflecting barrier while It may also be more 

appropriate to set 𝑝11 = 1 − 𝑝  and 𝑝12 = 𝑝, 

called a Bernoulli barrier, or 𝑝11 = 1 and 

𝑝12 = 0, called an absorbing barrier and we 

pursue our analysis with the reflecting barrier 

option. Since every state can reach every 

other state, the Markov chain is irreducible 

and hence all the states are positive recurrent 

or all the states are null recurrent or all the 

states are transient. We also notice that a 

return to any state is possible only in a 

number of steps that is a multiple of 2. Thus, 

the Markov chain is periodic with period 

equal to 2. We now state and prove the 

theorems below to classify the states of this 

chain, also as a tool for study random walks 

and gambler’s ruin. 

Theorem 1: Let 𝑃 be the single step 

transition probability matrix of an irreducible 

Markov chain. Then all the states of this 

Markov chain are positive recurrent if and 

only if the system of linear equations 

𝑦 = 𝑦𝑃,              (1) 

in which 𝑦 is a row vector, has a solution with 
∑  𝑦𝑗 = 1𝑎𝑙𝑙 𝑗 . 

Theorem 2: Let 𝑃 be the single step 

transition probability matrix of an irreducible 

Markov chain. Let 𝑃𝐼 be the matrix obtained 

from 𝑃 by deleting the row 𝑘 and column 𝑘. 

Then all states are recurrent if and only if the 

solution of   

𝑥 = 𝑃𝐼𝑥,   0 ≤ 𝑥 ≤ 1,    (2) 

is the zero vector. 

 

To prove the first theorem, consider the system of equation 𝑦 = 𝑦𝑃, 

(𝑦0  𝑦1 𝑦2⋯) = (𝑦0  𝑦1  𝑦2⋯)

(

 
 

0 1 1 ⋯
𝑞 0 𝑝 0 ⋯
0
0
⋮

𝑞
0
⋮

0 𝑝 0 ⋯
𝑞 0 𝑝
⋮ ⋮ ⋮ ⋱ )

 
 

.       (3) 

Taking this equation one at a time, we find  

𝑦0 = 𝑦1𝑞 => 𝑦1 =
1

𝑞
𝑦0, 

𝑦1 = 𝑦0 + 𝑞𝑦2 => 𝑦2 =
1

𝑞
(𝑦1 − 𝑦0) =

1

𝑞
(1 − 𝑞)𝑦1 = (

𝑝

𝑞
) 𝑦1 =

1

𝑞
(
𝑝

𝑞
) 𝑦0. 

All subsequent equations are of the form 

𝑦𝑗 = 𝑝𝑦−1 + 𝑞𝑦𝑗+1  for  𝑗 ≥ 2    (4) 

and have the solution 

𝑦𝑗+1 =
𝑝

𝑞
𝑦𝑗,            (5) 

which may be proven by induction as follows. Base clause, 𝑗 = 2: 

         𝑦2 = 𝑝𝑦1 + 𝑞𝑦3 => 𝑦3 =
1

𝑞
(𝑦2 − 𝑝𝑦1) =

1

𝑞
𝑦2 − 𝑦2 = (

𝑝

𝑞
) 𝑦2.                  (6) 

We now assume this solution to hold for j and prove it true for  (𝑗 + 1).  From 

𝑦𝑗 = 𝑝𝑦𝑗−1 + 𝑞𝑦𝑗+1  

𝑦𝑗 = 𝑝𝑦𝑗−1 + 𝑞𝑦𝑗+1  for  𝑗 ≥ 2 

𝑦𝑗+1 =
1

𝑞
(𝑦𝑗 − 𝑝𝑦𝑗−1) = (

1

𝑞
) 𝑦𝑗 − (

𝑝

𝑞
) 𝑦𝑗−1 = (1 −

1

𝑞
) 𝑦𝑗 = (

𝑝

𝑞
) 𝑦𝑗    (7) 

which completes the proof. This solution allows us to write any component in terms of 𝑦0. We have 
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𝑦𝑗 = (
𝑝

𝑞
)𝑦𝑗−1 = (

𝑝

𝑞
)
2

𝑦𝑗−2 = ⋯ = (
𝑝

𝑞
)
𝑗−1

𝑦1 =
1

𝑞
(
𝑝

𝑞
)
𝑗−1

𝑦𝑜 

and summing over all 𝑦𝑗,  we find 

∑ 𝑦𝑗
∞
𝑗=0 = 𝑦0 [1 +

1

𝑞
∑ (

𝑝

𝑞
)
𝑗−1

∞
𝑗=1 ].                                  (8) 

Since the summation inside the square bracket is finite if and only if p < q in which case 

∑ (
𝑝

𝑞
)
𝑗−1

∞
𝑗=1 = ∑ (

𝑝

𝑞
)
𝑗
= (

1

1−𝑝/𝑞
 )        𝑖𝑓𝑓   𝑝 < 𝑞∞

𝑗=0 .             (9) 

The sum of all 𝑦𝑗 being equal to 1 implies that 

1 = 𝑦0 [1 +
1

𝑞
(

1

1 − 𝑝/𝑞
 )] 

Simplifying the term inside the square brackets, we obtain 

1 = 𝑦0 [1 + (
1

𝑞−𝑝
 )] = 𝑦0 (

𝑞−𝑝+1

𝑞−𝑝
 ) = 𝑦0 (

2𝑞

𝑞−𝑝
 )  (10) 

and hence  

𝑦0 = (
𝑞−𝑝

2𝑞
 ) =

1

2
(1 −

𝑝

𝑞
)    for  𝑝 < 𝑞.        (11) 

The remaining 𝑦𝑗  are obtained as 

𝑦𝑗 =
1

𝑞
(
𝑝

𝑞
)
𝑗−1

𝑦0 =
1

2𝑞
(1 −

𝑝

𝑞
) (

𝑝

𝑞
)
𝑗−1
.                           (12) 

This solution satisfies the conditions of 

Theorem 1 (it exists and its components sum 

to 1) and hence all states are positive 

recurrent (when 𝑝 < 𝑞). We also see that the 

second part of this theorem is true (all 𝑦𝑗 are 

strictly positive). Finally, this theorem tells 

us that there is no other solution. We now 

examine the other possibilities, namely, 𝑝 =

𝑞 and 𝑝 > 𝑞. Under these conditions, either 

all states are null recurrent or else all states 

are transient from Theorem (1). We shall now 

use Theorem 2 to determine which case 

holds. Let the matrix 𝑃𝐼 be the matrix 

obtained from P when the first row and 

column of P is removed and let us consider 

the system of equations  𝑥 = 𝑃𝐼𝑥. We have 

(

𝑥1
𝑥2
𝑥3
⋮

) = (

0 𝑝 0 0 ⋯
𝑞 0 𝑝 0 ⋯
0
⋮

𝑞
⋮
0
⋱

𝑝
⋱

⋯
⋱

)(

𝑥1
𝑥2
𝑥3
⋮

).                                    (13) 

Again taking these equations one at a time, we have 

𝑥1 = 𝑝𝑥2, 

𝑥2 = 𝑞𝑥1 + 𝑝𝑥3, 

and in general 

𝑥𝑗 = 𝑞𝑥𝑗−1 + 𝑝𝑥𝑗+1,      (14) 

Writing the left-hand side as 𝑝𝑥𝑗 + 𝑞𝑥𝑗, we have 

𝑝𝑥𝑗 + 𝑞𝑥𝑗 = 𝑞𝑥𝑗−1 + 𝑝𝑥𝑗+1  for  𝑗 ≥ 2,   (15) 

which yields 
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𝑝(𝑥𝑗+1 − 𝑥𝑗) = 𝑞(𝑥𝑗 − 𝑥𝑗−1)    for  𝑗 ≥ 2.             (16) 

When j = 1, a similar rearrangement gives 

𝑝(𝑥2 − 𝑥1) = 𝑞𝑥1. 

It follows from Equation (16) that 

𝑥𝑗+1 − 𝑥𝑗 =
𝑞

𝑝
(𝑥𝑗 − 𝑥𝑗−1) = ⋯ = (

𝑞

𝑝
)
𝑗−1

(𝑥2 − 𝑥1) 

= (
𝑞

𝑝
)
𝑗−1
(
𝑞

𝑝
) 𝑥1 = (

𝑞

𝑝
)
𝑗
𝑥1  for  𝑗 ≥ 1.   (17) 

And 

𝑥𝑗+1 = (𝑥𝑗+1 − 𝑥𝑗) + (𝑥𝑗 − 𝑥𝑗−1) + (𝑥𝑗−1 − 𝑥𝑗−2) + ⋯+ (𝑥2 − 𝑥1) + 𝑥1 

= (
𝑞

𝑝
)
𝑗
𝑥1 + (

𝑞

𝑝
)
𝑗−1

𝑥1 +⋯+ (
𝑞

𝑝
) 𝑥1 + 𝑥1 , 

= [1 + (
𝑞

𝑝
) + (

𝑞

𝑝
)
2
+⋯+ (

𝑞

𝑝
)
𝑗
] 𝑥1.                                  (18) 

Consider now the case in which p = q. We obtain 

𝑥𝑗 = 𝑗𝑥1       (19) 

In order to satisfy the conditions of Theorem 

2, we need to have 0 ≤ 𝑥𝑖 ≤ 1  for all j. 

Therefore 

the only possibility in this case (𝑝 = 𝑞) is that 

𝑥1 = 0, in which case 𝑥𝑗 = 0 for all j. Since 

the 

only solution is 𝑥 = 0, we may conclude 

from Theorem 2 that all the states are 

recurrent states and since we know that they 

are not positive recurrent, they must be null 

recurrent. Finally, consider the case in which  

𝑝 > 𝑞.  In this case, (
𝑞

𝑝
) is a fraction and the 

summation converge. We have 

𝑥𝑗 = [1 + (
𝑞

𝑝
) + (

𝑞

𝑝
)
2
+⋯+ (

𝑞

𝑝
)
𝑗
] 𝑥1 = ∑ (

𝑞

𝑝
)
𝑘
𝑥1

𝑗−1
𝑘=0 =

1−(𝑞/𝑝)𝑗

1−𝑞/𝑝
𝑥1.    (20) 

It is apparent that if we now set 

𝑥1 = 1 − (
𝑞

𝑝
) 

we obtain a value of 𝑥𝑖 that satisfies  0 ≤ 𝑥𝑖 ≤ 1 and, furthermore, we also obtain 

𝑥𝑗 = 1 − (
𝑞

𝑝
)
𝑗
,        (21) 

which also satisfies 0 < 𝑥𝑗 < 1 for all 𝑗 ≥ 0. From Theorem 2 we may now conclude that all 

the states are transient when 𝑝 > 𝑞.  
 

Results 

Let us now consider a different random walk, 

the gambler’s ruin problem. The gambler 

begins with 𝑖 Nairas and on each play either 

wins a Naira with probability 𝑝 or loses a 

Naira with probability 𝑞 = 1 − 𝑝 . If 𝑋𝑛 is 

the amount of money he has after playing n 

times, then  {𝑋𝑛, 𝑛 = 0, 1, 2,⋯ }   is a Markov 
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chain and the transition probability matrix is 

given by 

𝑃 =

(

 
 
 
 

1 0 0 0 ⋯ 0
𝑞 0 𝑝 0 ⋯ 0
0
⋮
0
0
0

𝑞
⋱

0
⋱
⋯
⋯
⋯

𝑝
⋱

𝑞
0
0

⋯

0
𝑞
0

𝑝
0
0

0
⋮
0
𝑝
1)

 
 
 
 

 

Fig 3: Transition probability matrix for gambler’s ruin problem 

We would like to find the probability that the 

gambler will eventually make his fortune by 

arriving in state N given that he starts in state 

𝑖. Let 𝑦𝑖 be this probability. We immediately 

have that 𝑦0 = 0  and 𝑦𝑁 = 1, since the 

gambler cannot start with zero Naira and win 

N nairas, while if he starts with N nairas he 

has already made his fortune. Given that the 

gambler starts with 𝑖 nairas, after the first 

play he has (𝑖 + 1) nairas with probability p, 

and (𝑖 − 1) nairas with probability q. It 

follows that the probability of ever reaching 

state N from state 𝑖 is the same as the 

probability of reaching N beginning in 

(𝑖 + 1) with probability p plus the probability 

of reaching state N beginning in state (𝑖 − 1) 
with probability 𝑞. In other words 

𝑦1 = 𝑝𝑦𝑖+1 + 𝑞𝑦𝑖−1 

This is the equation that will allow us to solve 

our problem. It holds for all  1 ≤ 𝑖 ≤
(𝑁 − 1). We should note that it does not 

result from the multiplication of a vector by 

the transition probability matrix, but rather by 

conditioning on the result of the first play. 

Writing this equation as 

𝑦1 = 𝑝𝑦𝑖 + 𝑞𝑦𝑖 = 𝑦1 = 𝑝𝑦𝑖+1 + 𝑞𝑦𝑖−1, 

allows us to derive the recurrence relation 

𝑦𝑖+1 − 𝑦𝑖 =
𝑞

𝑝
(𝑦𝑖 − 𝑦𝑖−1),      𝑖 = 1,2,⋯ , 𝑁 − 1,   (22)  

Now, using the fact that  𝑦0 = 0 , we have 

𝑦2 − 𝑦1 =
𝑞

𝑝
(𝑦1 − 𝑦0) =   

𝑞

𝑝
𝑦1 , 

𝑦3 − 𝑦2 =
𝑞

𝑝
(𝑦2 − 𝑦1) = (

𝑞

𝑝
) 𝑦1 , 

      ⋮ 

𝑦𝑖 − 𝑦𝑖−1 =
𝑞

𝑝
(𝑦𝑖−1 − 𝑦𝑖−2),      𝑖 = 1, 2,⋯ ,𝑁                  (23) 

Adding these equations, we find 

𝑦𝑖 − 𝑦1 = (
𝑞

𝑝
+ (
𝑞

𝑝
)
2

  +  ⋯+ (
𝑞

𝑝
)
𝑖−1

  ) 𝑦1, 

i.e., 

𝑦𝑖 = (1 +
𝑞

𝑝
+ (

𝑞

𝑝
)
2
  +  ⋯+ (

𝑞

𝑝
)
𝑖−1
  ) 𝑦1 = ∑ (

𝑞

𝑝
)
𝑘
𝑦1.

𝑖−1
𝑘=0       (24) 

We must consider the two possible cases for this summation,  𝑝 ≠ 𝑞  and 𝑝 = 𝑞 = 1/2. 

 When 𝑝 ≠ 𝑞, then 
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𝑦𝑖 = (
1−(

𝑞

𝑝
)
𝑖
  

1−
𝑞

𝑝

)𝑦1,      (25) 

And in particular 

(
1−(

𝑞

𝑝
)
𝑖
  

1−
𝑞

𝑝

)𝑦1 = 𝑦𝑁 = 1.                (26) 

This allows us to compute 𝑦1 as 

𝑦1 =
1−

𝑞

𝑝
  

1−(
𝑞

𝑝
)
𝑁
 
,        (27) 

and from this, all the remaining values of 𝑦𝑖 , 𝑖 = 1, 2, 3,⋯ ,𝑁 − 1, can be found. Collecting these 

results together, we have 

𝑦𝑖 = (
1−(

𝑞

𝑝
)
𝑖
  

1−
𝑞

𝑝

) ×
1−

𝑞

𝑝
  

1−(
𝑞

𝑝
)
𝑁
 
=
1−(

𝑞

𝑝
)
𝑖
  

1−(
𝑞

𝑝
)
𝑁
 
,   𝑖 = 1, 2,⋯ ,𝑁   𝑎𝑛𝑑 𝑝 ≠ 𝑞.       (28) 

 Notice the limits as N tends to infinity: 

lim
𝑁→∞

𝑦𝑖 = {
1 − (

𝑞

𝑝
)
𝑖
,   𝑝 > 1/2,

0,              𝑝 < 1/2.
             (29) 

Illustrative Example 1: Grace and her sister 

Gloria play cards. At each game Grace has a 

58% chance of winning (perhaps he cheats) 

while Gloria has only a 42% chance of 

winning. If Grace starts with 14 cards and 

Gloria with 18, what is the probability that 

Grace ends up with all the cards? Suppose 

Grace starts with only 6 marbles (and Gloria 

with 15), what is the probability that Gloria 

ends up with all the cards? 

We shall use the following equation 

generated during the gambler’s ruin problem: 

𝑦𝑖 =
1 − (

𝑞
𝑝)
𝑖
  

1 − (
𝑞
𝑝)
𝑁
 
,   𝑖 = 1, 2,⋯ ,𝑁   𝑎𝑛𝑑 𝑝

≠ 𝑞. 

Substituting in the values 𝑃 = 0.58, 𝑖 = 14, 

and 𝑁 = 32,, we have 

𝑦14 =
1 − (

0.42
0.58

)
14

  

1 − (
0.42
0.58

)
32

 

= 0.9891. 

To answer the second part, the probability 

that Gerard, in a more advantageous initial 

setup, wins 

all the marbles, we first find 𝑦6, the 

probability that Grace wins them all. We 

have 

𝑦6 =
1 − (

0.42
0.58

)
6

  

1 − (
0.42
0.58

)
21

 

= 0.9999 

So, the probability that Grace takes all of 

Gloria’s cards is only 1 − 0.99999 = 0.00001 

Discussion 

This means that, when the game favours the 

gambler (𝑝 > 1/2), there is a positive 

probability that the gambler will make his 

fortune. However, when the game favours the 

house, then the gambler is sure to lose all his 

money. This same sad result holds when the 

game favours neither the house nor the 

gambler (𝑝 = 1/2).  When (𝑝 = 𝑞 = 1/2), 
then 𝑦𝑖 = 1/𝑁,   for  𝑖 = 1, 2,⋯ ,𝑁   and 

hence 𝑦𝑖 approaches zero as 𝑁 → ∞. Also, in 

the illustrative example, the probability that 
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Grace ends up with all the cards is  given as 

0.9891, and the probability that Gloria ends 

up with all the cards is 0.99999, while the the 

probability that Gloria takes all of Grace’s 

cards is 0.0001. 

 

Conclusion  

The states of the Markov chain with the 

integers 0,±1,±2, . .. (the drunkard’s straight 

line) where the only transitions from any state 

𝑘  are to neighbouring states (𝑘 + 1) : a step 

to the right with probability 𝑝 and (𝑘 − 1) : a 

step to the left with probability 𝑞 = (1 − 𝑝) 
has been investigated, in order to provide 

some insight in determining whether the 

gambler is ruined, that is, loses all his money 

in which  the Markov chain moves to state 0, 

and taken to be an absorbing state or wins a 

fortune that Markov chain moves into 

absorbing state 𝑁 > 𝑘, where  𝑁 is large. Our 

quest is to analyse the transition diagram and 

probability transition matrix to obtain the 

solution to the system of linear equations for 

the gambler’s ruin problem.  The theorems, 

Gaussian elimination method with the help of 

some existing equations in Markov chain are 

used.  The probability that Grace ends up 

with all the cards is given as 0.9891, and the 

probability that Gloria ends up with all the 

cards is 0.99999, while the the probability 

that Gloria takes all of Grace’s cards is 

0.0001. 
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